

ELABORAÇÃO DE UM TUTORIAL DO SAP 2000 PARA O ESTUDO DE VIBRAÇÕES LIVRES EM PÓRTICOS ESPACIAIS

Adriana Alencar Santos – aasn.eng@uea.edu.br Rogério Coelho Lopes – rlopes@uea.edu.br Universidade do Estado do Amazonas – U.E.A., Departamento de Engenharia Mecânica Av. Darcy Vargas, nº 1200, Parque 10, 69065-020 – Manaus – AM. Arlindo Pires Lopes – arlindo@unb.br Li Chong Lee Bacelar de Castro – lichonglee@unb.br Universidade de Brasília – UnB, Departamento de Engenharia Civil e Ambiental Campus Universitário Darcy Ribeiro, 70910-900 – Brasília – DF.

Resumo: Visando auxiliar a abordagem do extenso conteúdo da disciplina de Teoria das Estruturas, busca-se elaborar um tutorial para o estudo de vibrações livres em pórticos espaciais. O SAP 2000 é um programa comercial de análise estrutural e está disponível em várias instituições educacionais através de licenças. O objetivo principal deste trabalho é a elaboração do referido tutorial para ilustrar a aplicabilidade deste programa, auxiliando os estudantes na compreensão do conteúdo e na análise dos resultados obtidos. Desta forma é possível estimular os estudantes, fazendo com que os mesmos aprendam a utilizar o programa, e também tornar as aulas mais atraentes.

Palavras-chave: SAP 2000, Vibrações livres, Pórticos Espaciais, Teoria das estruturas.

1 INTRODUÇÃO

O uso de computadores nos cursos de engenharia tem sido objeto de estudo por parte de educadores há mais de trinta e cinco anos (LICKLIDER, 1966). Nas atividades de engenharia, de um modo geral, os engenheiros são colocados diante de problemas técnicos, uns simples e outros mais complexos, tendo que resolvê-los de uma forma prudente e satisfatória. No que diz respeito ao projeto estrutural, o engenheiro deve garantir que a estrutura não venha a ter problemas que comprometam a segurança dos seus usuários. Na análise de uma estrutura, o sucesso desta tarefa não está apenas relacionado a formulações matemáticas, mas à capacidade do engenheiro para entender os fenômenos físicos que representam o problema a ser solucionado.

Para sistemas de geometria simples, com condições de carregamento e apoio muito "bem comportados", encontram-se soluções analíticas para tais sistemas. Porém, grande número das estruturas de importância prática é muito complexo para ser analisado por técnicas clássicas. Para estruturas de forma arbitrária, a solução analítica freqüentemente torna-se impossível, e então o problema requer grandes e excessivas simplificações.

Os métodos analíticos clássicos permitem o cálculo da resposta exata das incógnitas da estrutura em todos os seus pontos. Estas soluções, no entanto, são somente conhecidas para alguns casos, que fogem das aplicações práticas encontradas no dia-a-dia.

Faz-se necessário utilizar procedimentos aproximados, que podem ser aplicados em caráter geral, independentemente da forma da estrutura e da condição de carregamento, desde que dentro da precisão aceitável do problema de engenharia. Este caminho alternativo aos procedimentos analíticos clássicos constitui a idéia central do Método dos Elementos Finitos (MEF). Nas últimas décadas o MEF tornou-se uma técnica eficiente, aplicável à análise de problemas relacionados com placas, cascas, barragens, estabilidade de taludes, fundações, escoamento de fluidos, dinâmica estrutural, entre outros. Sua eficiência e desenvolvimento devem-se a dois fatores: aplicações de métodos matriciais na mecânica estrutural e o uso de computadores. Maiores informações sobre o MEF podem ser encontradas em ZIENKIEWICZ (1977), BATHE (1982), ASSAN (1999) e FELIPPA (2000).

O programa comercial SAP 2000 v.10.0.1, baseado no MEF, foi escolhido para o desenvolvimento do presente trabalho por ser uma ferramenta muito difundida no campo da engenharia estrutural e, ainda, por encontrar-se disponível em várias instituições educacionais através de licenças. O objetivo deste trabalho é a elaboração de um tutorial "passo-a-passo" referente ao estudo de vibrações livres em pórticos planos. O estudo de vibrações pode ser encontrado em CLOUGH & PENZIEN (1993) e CHOPRA (2005).

2 TUTORIAL

2.1 Definição do modelo geométrico da estrutura

O SAP 2000 inicia com a seguinte tela, de acordo com a Figura 1.

🔀 SAP2000 v10.0.1 Advanced - (Untitled) - []	_ 8 ×
🔀 Elle Edit View Define Bridge Draw Select Assign Agalyze Display Design Options Help	X
🗅 📽 🖬 📽 🗠 ⇔ 🖌 🚔 → 👂 🖉 🌒 🌒 🥵 🖉 🖉 🖉 🖉 🖉 🖉 🖉	2. I·■·・ □方☆·・
<u>×</u>	
*	
×	
al ^{Ry}	
ps ²⁸	
c.B.	
TNA	
E1	
Ready	X0,00 Y0,00 Z0,00 GLOBAL 💌 Kip, in, F 💌

Figura 1 – Tela de apresentação do programa.

No canto inferior direito da Figura 1, selecione as unidades a serem utilizadas na análise (KN, m, C).

Clique no Menu FILE \rightarrow NEW MODEL para visualizar os modelos estruturais de acordo com a Figura 2.

Model Initialize Initialize Mod Initialize Mod Initialize Mod	ation del from Defaults del from an Exist	with Units K ing File	N, m, C 💌		
elect Template					
		<u> "</u> "			R
Blank	Grid Only	Beam	2D Trusses	3D Trusses	2D Frames
				Æ	T
3D Frames	Wall	Flat Slab	Shells	Staircases	Storage Structures
		4~~ }			
Underground	Solid Models	Cable Bridges	Caltrans-BAG	Bridge Wizard	Pipes and Plates

Figura 2 – Modelos estruturais do programa.

Clique em **3D FRAMES** para visualizar o pórtico espacial e definir os dados de entrada, de acordo com a Figura 3.

8D Frames		
3D Frame Type	Open Frame Building Dimensions	
Open Frame Building 💌	Number of Stories 1 Story Height 3,	
	Number of Bays, X 1 Bay Width, X 4	
Æ	Number of Bays, Y 1 Bay Width, Y 4	
	Use Custom Grid Spacing and Locate Origin	
	C Section Properties	
	Beams W18X35	
	Columns W18X35	
		_
✓ Restraints	OK Cancel	

Figura 3 – Entrada de dados para o pórtico espacial.

Defina o número de pavimentos (Number of Stories), número de vãos (Number of Bays), altura do pavimento (Story Height) e largura do vão (Bay Width). Clique em **OK** e um esboço do modelo aparecerá na tela, conforme a Figura 4.

Figura 4 – Esboço do pórtico espacial.

Feche a janela do X-Y PLANE e trabalhe apenas no 3D VIEW. Clique no Menu VIEW \rightarrow ZOOM OUT ONE STEP até atingir a configuração da Figura 5.

Figura 5 - Representação do pórtico espacial em uma única vista (3D).

Para mudar o tipo dos apoios, selecione os respectivos nós, clique no Menu ASSIGN \rightarrow JOINT \rightarrow RESTRAINTS para aparecer a configuração dos apoios conforme a Figura 6.

Joint Restraints
Restraints in Joint Local Directions
✓ Translation 1 ✓ Rotation about 1
▼ Translation 2 ▼ Rotation about 2
▼ Translation 3 ▼ Rotation about 3
Fast Restraints
OK Cancel

Figura 6 - Configuração dos apoios.

Escolha o tipo de apoio, por exemplo, do terceiro gênero (engastamento) e clique em **OK**. Observe que os apoios assumiram uma nova configuração, conforme a Figura 7.

2.2 Definição dos materiais

Clique no Menu **DEFINE** \rightarrow **MATERIALS** para acessar a Figura 8.

Define Materials	
Materials ALUM CLDFRM CONC OTHER REBAR STEEL	Click to: Add New Material Modify/Show Material Delete Material
	Cancel

Figura 8 – Definição do tipo de material a ser utilizado.

Pode-se adicionar um novo material (diferente dos listados anteriormente), clicando em ADD NEW MATERIAL e seguir as orientações. Clique em CANCEL. Da mesma forma, pode-se conferir ou modificar as propriedades do material, clicando em MODIFY/SHOW MATERIAL, conforme a Figura 9. Clique em CANCEL \rightarrow OK.

		Displau Color	
Material Name	ALUM	Color	
Type of Material		Type of Design	
 Isotropic C 	Irthotropic	Design	Aluminum 💌
C Anisotropic C L	Iniaxial		
Analysis Property Data		Design Property Data (AA-ASD 20	100)
Mass per unit Volume	2,7145	Aluminum Alloy Designation	6061-T6
Weight per unit Volume	26,6018	Compressive Yield Strength, Fcy	241316,53
Modulus of Elasticity	69637055	Tensile Yield Strength, Fty	241316,53
Poisson's Ratio	0,33	Tensile Ultimate Strength, Ftu	262000,8
Coeff of Thermal Expansion	2,358E-05	Shear Yield Strength, Fsy	137895,16
Shear Modulus	26179344	Shear Ultimate Strength, Fsu	165474,19
		Wrought C Mold Cast	C Sand Cast
Advanced Material Property Data			
Time Dependent Prop	perties		
Material Damping Pro	perties	CCC OK	Cancel
Stress-Strain Curve De	finitions		

Figura 9 – Propriedades físicas dos materiais.

2.3 Definição das propriedades dos elementos

Selectione as vigas do Pórtico Espacial, clique no Menu ASSIGN \rightarrow FRAME/CABLE/TENDON \rightarrow FRAME SECTIONS para acessar a Figura 10.

Properties	Choose Property Type to Add-
Find this property:	Import I/Wide Flange
W8X10	
W8×10	Add I / Wide Flange 🔻
W8X24	
W8X31	Click to:
W8X40 W8X58	Add New Property
W8×67	
W10X12	Add Copy of Property
W10X49	Modifu/Show Property
W10X88	
W10×112	Delete Property

Figura 10 – Propriedades geométricas das seções transversais.

No item correspondente ao CHOOSE PROPERTY TYPE TO ADD, escolha a opção ADD RECTANGULAR e depois clique em ADD NEW PROPERTY para acessar a configuração da seção retangular, conforme a Figura 11.

Frame Properties	Rectangular Section
Properties Find this property: \V&&\text{N10} \V<\text{N10}	Section Name FSEC1 Properties Property Modifiers Section Properties Set Modifiers Dimensions 0.4572 Depth (13) 0.4572 Width (12) 0.254
	Concrete Reinforcement Cancel

Figura 11 – Propriedades geométricas da seção retangular.

No SECTION NAME onde está escrito "FSEC1" escreva "VIGA", escolha a opção de material STEEL (aço) e especifique a seção retangular de $0,20 \text{ m} \times 0,40 \text{ m}$. Observe que as oito barras de aço da figura acima desaparecem, uma vez que o "Default" do SAP 2000 sugere que o material seja concreto armado (CONC). Clique em OK \rightarrow OK, para visualizar a Figura 12.

Properties	Property Modifiers	Material
Section Properties	Set Modifiers	STEEL
Dimensions		
Depth (t3)	0,40	
Width (t2)	0,20	
		Display Color

Figura 12 – Representação da seção transversal retangular da viga de aço.

Agora selecione os pilares do Pórtico Espacial, clique no Menu ASSIGN \rightarrow FRAME/CABLE/TENDON \rightarrow FRAME SECTIONS \rightarrow ADD RECTANGULAR \rightarrow ADD NEW PROPERTY e no SECTION NAME escreva "PILAR", escolha a opção de material STEEL (aço) e especifique a seção retangular de 0,20 m x 0,20 m e clique em OK. Observe que a janela do FRAME PROPERTIES aparecerá "VIGA" e "PILAR" na listagem, conforme a Figura 13. Clique em OK.

Figura 13 – Inclusão da "Viga" e do "Pilar" na listagem das propriedades das seções.

Após esses procedimentos o pórtico espacial terá a seguinte configuração. Observe que os elementos estão nomeados como **VIGA** ou **PILAR**, conforme a Figura 14.

Figura 14 - Representação do pórtico espacial já com os elementos nomeados.

Clique no Menu VIEW \rightarrow SET DISPLAY OPTIONS \rightarrow JOINTS \rightarrow LABELS, para opções de visualização, conforme a Figura 15. Clique em OK.

Display Options For Active Wi	indow		
Joints	Frames/Cables/Tendons	General	View by Colors of
✓ Labels	Labels	🗖 Shrink Objects	 Objects
Restraints	Sections	Extrude View	C Sections
Springs	Releases	Fill Objects	C Materials
Local Axes	Local Axes	Show Edges	C Color Printer
Invisible	Frames Not in View	Show Ref. Lines	C White Background, Black Objects
Not in View	Cables Not in View	Show Bounding Boxes	C Selected Groups Select Groups
	Tendons Not in View		
Areas	Solids	Links	
Labels	Labels	🗖 Labels	Apply to All Windows
Sections	E Sections	Properties	
Local Axes	Local Axes	Local Axes	UK
Not in View	🗖 Not in View	■ Not in View	Cancel

Figura 15 – Opções de visualização.

Observe na Figura 16 que ficou ativo a numeração dos nós do pórtico espacial.

Figura 16 – Numeração dos nós do pórtico espacial.

Clique no Menu DRAW \rightarrow DRAW POLY AREA \rightarrow clique nos nós 4, 2, 6 e 8. Tecle ESC. Observe que foi criado um elemento retangular do tipo SHELL na parte de cima da estrutura. Os elementos das vigas e pilares são do tipo FRAME. Selecione o elemento SHELL, clique no Menu ASSIGN \rightarrow AREA \rightarrow SECTIONS, para acessar a Figura 17.

Area Sections	
Sections ASEC1	Select Section Type To Add
	Click to:
	Add New Section
	Add Copy of Section
	Modify/Show Section
	Delete Section
	[OK]
	Cancel

Figura 17 – Propriedades de seção transversal para o elemento do tipo SHELL.

Clique em MODIFY/SHOW SECTION para acessar a configuração do elemento SHELL. No SECTION NAME onde está escrito "ASEC1" escreva "LAJE", escolha a opção de material STEEL (aço) e especifique em THICKNESS a espessura de 0,1 m tanto em MEMBRANE quanto em BENDING, conforme a Figura 18.

Section Name	LAIF
	Display Color
Туре	
Shell - Thin	
🔘 Shell - Thick	
🔘 Plate - Thin	
C Plate - Thick	
C Membrane	
C Shell - Layered/Nor	nlinear
Modify/s	ihow Layer Definition
Material	
Material Name	STEEL
Material Angle	0,
Thickness	
Membrane	0.1
Develope	0.1
Bending	10,1
Concrete Shell Section D	esign Parameters
Modify/Show Sl	hell Design Parameters
	- Temp Dependent Properties-
Stiffness Modifiers	1 200 2 2 2 2 1 2 2 1 1 2 2 2 2 1 2 2
Stiffness Modifiers	Thermal Properties

Figura 18 – Propriedades físicas e geométricas para o elemento do tipo SHELL.

Clique em $OK \rightarrow OK$.

Selectone a Laje do Pórtico Espacial, clique no Menu EDIT \rightarrow DIVIDE AREAS \rightarrow DIVIDE AREA INTO THIS NUMBER OS OBJECTS \rightarrow digite 4 e 4 \rightarrow OK, conforme a Figura 19.

Quads and Triangles Only)
4
4
G

Figura 19 – Divisão de uma área em quantidade finita de elementos.

Clique no Menu **OPTIONS** \rightarrow **WINDOWS** \rightarrow **TWO TILED VERTICALLY**. Observe que no X-Y PLANE @ Z=3, a laje original é dividida em 16 elementos finitos, conforme a Figura 20.

Figura 20 – Laje original dividida em 16 elementos finitos.

Feche a janela do 3D VIEW e trabalhe apenas no X-Y PLANE @ Z=3.

Clique no Menu VIEW \rightarrow SET DISPLAY OPTIONS \rightarrow JOINTS \rightarrow LABELS \rightarrow OK. Selectione os nós que contornam a estrutura, ou seja, os nós 2, 27, 28, 29, 6, 26, 21, 16, 8, 15, 13, 11, 4, 9, 17 e 22 (totalizando 16 nós). Selectione também as quatro vigas correspondentes a esses nós, conforme a Figura 21. No canto inferior esquerdo deverá aparecer a seguinte mensagem: 16 POINTS, 4 FRAMES SELECTED.

Figura 21 – Representação da laje do pórtico espacial no plano X-Y.

Clique no Menu EDIT \rightarrow MERGE JOINTS \rightarrow OK, para que haja a união dos nós das vigas e da laje. Clique no Menu OPTIONS \rightarrow WINDOWS \rightarrow TWO TILED VERTICALLY \rightarrow feche a janela do X-Y PLANE e trabalhe apenas do 3D VIEW.

2.4 Visualização dos elementos estruturais

Clique no Menu VIEW \rightarrow SET DISPLAY OPTIONS \rightarrow GENERAL \rightarrow EXTRUDE VIEW \rightarrow OK, para visualizar os elementos com suas seções transversais preenchidas. Utilize as ferramentas do Menu VIEW para visualizar os elementos nas suas mais diversas formas ou os ícones da barra de ferramentas da Figura 22.

Figura 22 – Barra de ferramentas de visualização.

Clique no Menu VIEW \rightarrow SET DISPLAY OPTIONS \rightarrow GENERAL \rightarrow desmarque a opção EXTRUDE VIEW \rightarrow OK.

2.5 Definição do carregamento

Caso queira-se retirar o peso próprio da estrutura, procede-se da seguinte forma: Tecle CTRL+A (para selecionar todos os nós e elementos), clique no Menu DEFINE \rightarrow LOAD CASES \rightarrow SELF WEIGHT MULTIPLIER \rightarrow DIGITE 0 (zero) \rightarrow MODIFY LOAD \rightarrow OK. Tecle ESC. Uma vez que a análise em questão é do tipo <u>VIBRAÇÕES LIVRES</u>, não existe carregamento em função do tempo.

2.6 Análise da estrutura

A partir desse momento a estrutura está pronta para ser analisada. Para tanto é necessário salvar o arquivo. Clique no Menu FILE \rightarrow SAVE \rightarrow NOMEIE O ARQUIVO \rightarrow SALVAR. Recomenda-se que o procedimento de salvar o arquivo seja feito o quanto antes, para evitar perda de dados na modelagem da estrutura. Clique no Menu DEFINE \rightarrow ANALYSIS CASES \rightarrow MODAL \rightarrow MODIFY/SHOW CASE, para aparecer a Figura 23.

Analysis Case Name MODAL	Set Def Name	Analysis Case Type Modal
Stiffness to Use		Type of Modes
Zero Initial Conditions · Unstressed State		 Eigen Vectors
 Stiffness at End of Nonlinear Case Important Note: Loads from the Nonlinear in the current case 	Case are NOT included	C Ritz Vectors
Number of Modes		
Maximum Number of Modes	4	
Minimum Number of Modes	1	
Loads Applied		
Show Advanced Load Parameters		
Other Parameters		
Frequency Shift (Center)	0,	
Cutoff Frequency (Radius)	0,	
Commence Talacana	1.000E-09	Cancel

Figura 23 – Tipos de análise.

Na opção NUMBER OF MODES, defina o número de modos de vibração como sendo igual a 4. Clique em $OK \rightarrow OK$. Observe que o tipo de análise escolhido foi a Modal.

Clique no Menu ANALYZE \rightarrow SET ANALYSIS OPTIONS \rightarrow SPACE FRAME \rightarrow OK. Clique no Menu ANALYZE \rightarrow RUN ANALYSIS \rightarrow TYPE: LINEAR STATIC (DO NOT RUN) \rightarrow TYPE: MODAL (RUN) \rightarrow RUN NOW, conforme a Figura 24. Isto fará com que apenas a análise modal seja executada.

Case Name	Туре	Status	Action	
DEAD	Linear Static	Not Run	Do not Run	Run/Do Not Run Case
MODAL	Modal	Not Run	Run	Show Case
				Delete Results for Case
				Run/Do Not Run All
				Delete All Results
		Show Analysis C	ase Tree	

Figura 24 – Execução da análise de vibrações livres.

Agora o programa executará a análise de vibrações livres da estrutura, calculando as freqüências naturais e seus respectivos modos de vibração, e após alguns segundos aparecerá a seguinte mensagem, conforme a Figura 25. Clique em **OK**.

ANALYSIS C	MPLETE	2006/07/23	14:33:02 💌
	OK	Cancel	

Figura 25 – Mensagem de que a análise foi completa.

2.7 Resultados

No canto inferior direito clique em **START ANIMATION**. Observe que a estrutura entrará em movimento de acordo com 1º modo de vibração, conforme a Figura 26. Para parar clique em **STOP ANIMATION**.

Figura 26 – Representação do 1º modo de vibração.

XXXV Congresso Brasileiro de Educação em Engenharia – COBENGE 2007 2P09 - 12

Observe ainda que aparece, no canto superior esquerdo do 1º modo de vibração, o período igual a 0,14924 que é o inverso da freqüência. Para visualizar os demais modos de vibração, Figuras 27 a 29, clique em 🚔, situado no canto inferior direito.

Figura 27 - Representação do 2º modo de vibração.

Figura 28 - Representação do 3º modo de vibração.

Figura 29 – Representação do 4º modo de vibração.

XXXV Congresso Brasileiro de Educação em Engenharia – COBENGE 2007 2P09 - 13

Clique no Menu FILE \rightarrow PRINT TABLES \rightarrow ANALYSIS RESULTS \rightarrow OUTPUT TYPE: TXT FILE \rightarrow OPTIONS: PRINT TO FILE (apenas) \rightarrow OK, para gravar o arquivo para posterior análise.

2.8 Alteração dos dados da estrutura

Para alterar qualquer parâmetro na estrutura, o modelo original deverá ser destravado na barra de ferramentas (clique no cadeado \rightarrow OK), conforme a Figura 30. Isto fará com que todos os resultados da análise sejam apagados. Faça quaisquer mudanças que sejam necessárias e execute o modelo novamente.

<u>D</u> efine	<u>B</u> ridge	D <u>r</u> aw	<u>S</u> elect	<u>A</u> ssign
s ci	🖉		P	ې 🙊 🔍

Figura 30 – Cadeado a ser destravado para uma outra análise.

3 CONSIDERAÇÕES FINAIS

Através do emprego do MEF e utilizando um programa comercial de análise estrutural, neste caso o SAP 2000 versão 10.0.1, disponível tanto na Universidade do Estado do Amazonas – U.E.A. quanto na Universidade de Brasília –UnB, é possível demonstrar aos estudantes de engenharia como solucionar problemas complexos de engenharia empregando os modernos recursos computacionais. Entretanto, é de bom alvitre, na fase de introdução destes recursos aos estudantes, resolver exemplos clássicos, onde se conheça a solução analítica. Isto possibilita enfatizar tanto os fenômenos físicos envolvidos quanto o uso das ferramentas do programa.

É de domínio público que a utilização incorreta de qualquer programa computacional pode trazer conseqüências funestas ao desenvolvimento de um determinado projeto de engenharia. Por esse motivo deve-se tomar muito cuidado na hora de descrever aos estudantes as diferentes etapas que levam à construção de um modelo numérico computacional e, também, mostrar que existe uma enorme diferença entre "um piloto de programa" – aquele que é apenas um usuário do programa e que é incapaz de interpretar os resultados obtidos – e um engenheiro, que além de possuir uma formação intelectual sólida, conhece muito bem o programa, sabendo inclusive suas vantagens e desvantagens.

Atualmente os estudantes dos cursos de Teoria das Estruturas, da U.E.A e UnB, utilizam diversas ferramentas computacionais para realizarem os cálculos. As vantagens de se utilizar estas ferramentas em relação aos procedimentos manuais, incluem a redução de erros matemáticos, execução rápida de cálculos repetitivos e a exploração de configurações alternativas. A utilização de tutoriais têm se mostrado uma excelente ferramenta de auxílio no ensino de vibrações livres em pórticos planos, reduzindo o tempo gasto pelos estudantes na resolução dos exercícios, além de contribuir para uma melhor formação profissional e um melhor desempenho perante as exigências do mercado de trabalho.

4 REFERÊNCIAS BIBLIOGRÁFICAS

ASSAN, A. E. Método dos Elementos Finitos – Primeiros Passos. Campinas: Ed. UNICAMP, 1999.

BATHE, K. J. Finite Element Procedures in Engineering Analysis. New Jersey: Prentice Hall, 1982.

CHOPRA, A. K. Dynamics of Structures – Theory and Applications to Earthquake Engineering. New Jersey: Prentice Hall, 1995.

CLOUGH, R. W. & PENZIEN, J. Dynamics of Structures. New York: Mc Graw-Hill, 1993.

FELIPPA, C. A. Introduction to The Finite Element Method – Lecture Notes. Boulder: University of Colorado, 2000.

LICKLIDER, J. C. R. The Impact of Computers on Education in Engineering Design. In: **PROCEEDINGS OF THE CONFERENCE ON THE IMPACT OF COMPUTERS IN ENGINEERING DESIGN**, Washington, D.C., USA, 1966.

ZIENKIEWICZ, O. C. The Finite Element Method. London: Mc Graw-Hill, 1977.

TUTORIAL ELABORATION OF SAP 2000 IN THE STUDY OF FREE VIBRATION IN SPATIAL FRAMES

Abstract: To assist the extensive content of the subject Theory of the Structures, the elaboration of a tutorial in the study of free vibration in spatial frames is used. SAP 2000 is a known computer tool and it is available in many universities through licenses. The main objective of this work is the elaboration of the mentioned tutorial to illustrate the applicability of this program, assisting the students in the understanding of the content and the analysis of the obtained results. In this matter it is possible to stimulate students and make the lessons more attractive.

Key-words: SAP 2000, Free vibration, Spatial frames, Theory of Structures.